Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

Identifieur interne : 002209 ( Main/Exploration ); précédent : 002208; suivant : 002210

Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

Auteurs : Jun Wang ; Na Sun ; Ting Deng ; Lida Zhang [République populaire de Chine] ; Kaijing Zuo

Source :

RBID : pubmed:25378022

Descripteurs français

English descriptors

Abstract

BACKGROUND

Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable.

RESULTS

EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development.

CONCLUSIONS

Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved understanding of the roles of the Hsf gene family during stress responses and fiber development.


DOI: 10.1186/1471-2164-15-961
PubMed: 25378022
PubMed Central: PMC4233062


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).</title>
<author>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
</author>
<author>
<name sortKey="Sun, Na" sort="Sun, Na" uniqKey="Sun N" first="Na" last="Sun">Na Sun</name>
</author>
<author>
<name sortKey="Deng, Ting" sort="Deng, Ting" uniqKey="Deng T" first="Ting" last="Deng">Ting Deng</name>
</author>
<author>
<name sortKey="Zhang, Lida" sort="Zhang, Lida" uniqKey="Zhang L" first="Lida" last="Zhang">Lida Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. zhangld@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240</wicri:regionArea>
<wicri:noRegion>Shanghai 200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zuo, Kaijing" sort="Zuo, Kaijing" uniqKey="Zuo K" first="Kaijing" last="Zuo">Kaijing Zuo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25378022</idno>
<idno type="pmid">25378022</idno>
<idno type="doi">10.1186/1471-2164-15-961</idno>
<idno type="pmc">PMC4233062</idno>
<idno type="wicri:Area/Main/Corpus">001F34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F34</idno>
<idno type="wicri:Area/Main/Curation">001F34</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F34</idno>
<idno type="wicri:Area/Main/Exploration">001F34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).</title>
<author>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
</author>
<author>
<name sortKey="Sun, Na" sort="Sun, Na" uniqKey="Sun N" first="Na" last="Sun">Na Sun</name>
</author>
<author>
<name sortKey="Deng, Ting" sort="Deng, Ting" uniqKey="Deng T" first="Ting" last="Deng">Ting Deng</name>
</author>
<author>
<name sortKey="Zhang, Lida" sort="Zhang, Lida" uniqKey="Zhang L" first="Lida" last="Zhang">Lida Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. zhangld@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240</wicri:regionArea>
<wicri:noRegion>Shanghai 200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zuo, Kaijing" sort="Zuo, Kaijing" uniqKey="Zuo K" first="Kaijing" last="Zuo">Kaijing Zuo</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Conserved Sequence (genetics)</term>
<term>DNA Mutational Analysis (MeSH)</term>
<term>DNA-Binding Proteins (chemistry)</term>
<term>DNA-Binding Proteins (classification)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>Diploidy (MeSH)</term>
<term>Exons (genetics)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Gossypium (genetics)</term>
<term>Heat Shock Transcription Factors (MeSH)</term>
<term>Heat-Shock Response (genetics)</term>
<term>Introns (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Open Reading Frames (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Transcription Factors (chemistry)</term>
<term>Transcription Factors (classification)</term>
<term>Transcription Factors (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de mutations d'ADN (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Cadres ouverts de lecture (génétique)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Diploïdie (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Duplication de gène (MeSH)</term>
<term>Exons (génétique)</term>
<term>Facteurs de transcription (classification)</term>
<term>Facteurs de transcription (composition chimique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription de choc thermique (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Gossypium (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Introns (génétique)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines de liaison à l'ADN (classification)</term>
<term>Protéines de liaison à l'ADN (composition chimique)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Réaction de choc thermique (génétique)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence conservée (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de liaison à l'ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de liaison à l'ADN</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Conserved Sequence</term>
<term>DNA-Binding Proteins</term>
<term>Exons</term>
<term>Gossypium</term>
<term>Heat-Shock Response</term>
<term>Introns</term>
<term>Open Reading Frames</term>
<term>Plant Leaves</term>
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cadres ouverts de lecture</term>
<term>Exons</term>
<term>Facteurs de transcription</term>
<term>Feuilles de plante</term>
<term>Gossypium</term>
<term>Introns</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines végétales</term>
<term>Réaction de choc thermique</term>
<term>Séquence conservée</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>DNA Mutational Analysis</term>
<term>Diploidy</term>
<term>Gene Duplication</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Heat Shock Transcription Factors</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de mutations d'ADN</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Clonage moléculaire</term>
<term>Diploïdie</term>
<term>Données de séquences moléculaires</term>
<term>Duplication de gène</term>
<term>Facteurs de transcription de choc thermique</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Motifs d'acides aminés</term>
<term>Phylogenèse</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved understanding of the roles of the Hsf gene family during stress responses and fiber development.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25378022</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).</ArticleTitle>
<Pagination>
<MedlinePgn>961</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-961</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved understanding of the roles of the Hsf gene family during stress responses and fiber development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Na</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deng</LastName>
<ForeName>Ting</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lida</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. zhangld@sjtu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zuo</LastName>
<ForeName>Kaijing</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076249">Heat Shock Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004252" MajorTopicYN="N">DNA Mutational Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004171" MajorTopicYN="N">Diploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003368" MajorTopicYN="N">Gossypium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076249" MajorTopicYN="N">Heat Shock Transcription Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018869" MajorTopicYN="N">Heat-Shock Response</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25378022</ArticleId>
<ArticleId IdType="pii">1471-2164-15-961</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-961</ArticleId>
<ArticleId IdType="pmc">PMC4233062</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1998 Jun 1;332 ( Pt 2):507-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9601081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 9;110(3):281-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jun;17(6):369-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Mar;21(5):1759-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11238913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1679-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Jun;46(6):567-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24836287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1997;202(1):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9177056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D229-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2003 Feb;228(2):111-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12563018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jan;11(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(2):570-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23795774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2000 Nov;1(5):411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11258480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):86-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21272351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Genet. 1987;24:31-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3324701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2001 Jul;6(3):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11599559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Aug 1;33(8):1408-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Oct;44(10):1098-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22922876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 May 11;20(9):818-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20417101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Oct;15(10):573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Aug;64(11):3467-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23828547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):462-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jul;39(1):98-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 May;15(5):247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20304701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2008 Feb;35(2):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18407058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20494611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Apr;18(4):617-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12016059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Jan 24;22(2):103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22244999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jan 14;263(5144):224-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8284672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(2):221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17075077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Oct;12(10):452-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17826296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2004 Jun;17(6):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Mar 8;295(5561):1852-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1995;3:21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Jun 1;4:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15171794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Dec;9(13):4495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2148291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Mar 23;38(12):3559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10090742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Sep;47(9):785-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19539489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Feb;12(2):265-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10662862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Aug;98(2):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(12):3373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 1995;11:441-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8689565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):442-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Aug;11(8):545-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20628411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Feb;104(2-3):482-489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2001 Jul;6(3):238-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11599565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Mar;64:92-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23399534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):104-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22033015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(6):e66160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23750279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Feb;27(2):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17968552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Apr;18(4):2240-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9528795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2012 Jul 6;8(7):1940-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22569521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22992304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Dec 20;492(7429):423-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23257886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Oct;20(2):153-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Apr;8(4):179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711230</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Deng, Ting" sort="Deng, Ting" uniqKey="Deng T" first="Ting" last="Deng">Ting Deng</name>
<name sortKey="Sun, Na" sort="Sun, Na" uniqKey="Sun N" first="Na" last="Sun">Na Sun</name>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
<name sortKey="Zuo, Kaijing" sort="Zuo, Kaijing" uniqKey="Zuo K" first="Kaijing" last="Zuo">Kaijing Zuo</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Lida" sort="Zhang, Lida" uniqKey="Zhang L" first="Lida" last="Zhang">Lida Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002209 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002209 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25378022
   |texte=   Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25378022" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020